
Submitted to:
CREST 2017

c© S. Rehwald, A. Ibrahim, K. Beckers, A. Pretschner

ACCBench: A Framework for comparing Causality
Algorithms

Simon Rehwald Amjad Ibrahim Kristian Beckers Alexander Pretschner
Department of Informatics, Technical University of Munich, Garching b. Munich, Germany

{rehwald, ibrahim, beckers, pretschn}@in.tum.de

Modern socio-technical systems are increasingly complex. A fundamental problem is that
the borders of such systems are often not well-defined a-priori, which among other prob-
lems can lead to unwanted behavior during runtime. Ideally, unwanted behavior should
be prevented. If this is not possible the system shall at least be able to help determine
potential cause(s) a-posterori, identify responsible parties and make them accountable for
their behavior. Recently, several algorithms addressing these concepts have been proposed.
However, the applicability of the corresponding approaches, specifically their effectiveness
and performance, is mostly unknown. Therefore, in this paper, we propose ACCBench, a
benchmark tool that allows to compare and evaluate causality algorithms under a consis-
tent setting. Furthermore, we contribute an implementation of the two causality algorithms
by [7] and [6] as well as of a policy compliance approach based on some concepts of [16].
Lastly, we conduct a case study of an Intelligent Door Control System, which exposes con-
crete strengths and weaknesses of all algorithms under different aspects. In the course of
this, we show that the effectiveness of the algorithms in terms of cause detection as well as
their performance differ to some extent. In addition, our analysis reports on some qualita-
tive aspects that should be considered when evaluating each algorithm. For example, the
human effort needed to configure the algorithm and model the use case is analyzed.

1 Introduction

Our society, industry and daily lives are built on increasingly complex systems, be it artificial
organs or autonomous vehicles. Most of these consist of multiple or even hundreds of com-
ponents, all interacting with each other. These systems are increasingly vulnerable due to,
among others, cyber attacks, bugs, defective hardware, which in turn pose potential risk to
the economy as well as people’s health and livelihood. We must prevent these failures before
their occurrence; at the very least, we must be able to determine why a system failed and
what/who caused the failure.

A term often used in the context of these problems, is accountability [1, 19]. In computer
science, accountability is usually seen as a property of systems, which allows one to link
actions and activities to specific parts and actors of a system and hold the latter liable for
potential misbehavior. From a legal perspective, accountability is becoming increasingly im-
portant as for instance evidenced by autonomous driving systems. The behavior of such
systems is unpredictable during design time due to their self-learning nature. Hence, we
think that accountability is a property which will improve our current technological abilities.
One way how systems can enable accountability is the usage of event logs. Yet, because of
their complexity, manually analyzing these logs is practically impossible. Thus, reasonable

2 ACCBench: A Framework for comparing Causality Algorithms

mechanisms, which automatically determine responsible parties for specific observations or
at least support humans during this analysis, are needed.

Reality

System Model World Model Background

Causal Model Log

Explanation

Causes Suspects

Accountability
Mechanism

System
Descritpion

Known Laws
Unknown
Laws and
Events

Known
Events

Figure 1: Overview of Accountability
(adopted from [14]; arrows in this model need
to be read as “is represented in”)

Recently, [14] have proposed a high level overview of
accountability. As we can see in Fig. 1, also causality
[12, 13, 11] plays an important role in an accountability
mechanism. Using knowledge about the environment
and the system itself as well as the current events, a
causal model is created. This model allows to identify
explanation(s) for the observed behavior and misbe-
havior of a system.

In current research, several algorithms claiming to
be capable of generating those causal models have
been proposed and evaluated in different case stud-
ies. However, we neither know the quality of these
approaches in the sense of performance and effective-
ness, nor do we know, whether and to what extent
they are applicable. This paper therefore makes the following contributions:

– An extensible benchmark tool called ACCBench (Accountability Causality Comparison Bench-
mark) for comparing and evaluating causality algorithms regarding the criteria perfor-
mance and effectiveness is developed. We propose metrics base on binary classification
for estimating the latter criterion.

– The implementation of two causality algorithms (based on [7] and [6]) and one policy
compliance algorithm (based on [16]), all of which perform their analysis using event
logs.

– The algorithms are compared and evaluated in a case study. It considers Door Control
System. The event logs for this system have been generated with CPNTools1 using an
approach similar to [15].

Our choice of the three aforementioned algorithms is due in part to the fact that they are
among the most current in today’s research. In addition, their concepts seem more imple-
mentable thanks to their technical nature. Moreover, comparing a state-of-the-art causality
algorithm with a policy compliance algorithm may point out interesting differences between
both approaches.

The remainder of this paper is structured as follows. We start with related work in Section
2. Subsequently, we describe the new benchmark tool ACCBench, explain our used metrics and
briefly consider the implemented algorithms (Section 3). Then, in Section 4, we present our
case study containing the analysis and comparison of the implemented algorithms. Finally,
we conclude this paper in Section 5.

2 Related Work

The term accountability has been described in multiple different ways (see for instance [18,
2, 19]). In this paper however, we refer to the definition used in [1]. The authors think of
accountability as a capability of a socio-technical systems to answer questions regarding the

1http://cpntools.org/ [Accessed 07 February 2017]

http://cpntools.org/

S. Rehwald, A. Ibrahim, K. Beckers, A. Pretschner 3

cause of occurred unwanted behavior. Similarly, causality is a term with a variety of defini-
tions. One possible understanding of causality is the counterfactual approach, which tries to
establish causal relationships by asking questions like “Would have event B still happened if
another event A would have not happened?”. A widely-adopted formal definition based on
the counterfactual approach has been made in [12, 13, 11].

To the best of our knowledge, the work about the comparison of causality algorithms is
insufficient. One related work compares the approaches to determine causality between vari-
ables. In [17], the authors analyze a set of bivariate causal discovery methods. These methods
compute which variable out of two is the cause for the other variable, i.e. the causal relation-
ship between two variables is searched. The methods are compared by checking whether or
not they can detect the correct causing variable using the available data. The key difference
of this work to our approach is that we do not compare techniques for discovering the causal
relationship between two variables, but techniques for discovering the cause(s) for observed
faulty behavior of a system. Nevertheless, the main idea, i.e. the comparison of different
causal methodologies and their evaluation, stays the same. Besides that, [9, 8, 10] describe the
“Causality Workbench” project, which provides resources for benchmarking causal discovery
algorithms. These resources comprise sample datasets and software tools. Furthermore a
virtual lab [9] has been created, which allows to conduct experiments in order to analyze the
causal relationships in a provided model. Similar to the approach in [17], that project differs
from the goals of this paper in several parts as well. First of all, the “Causality Workbench”
just provides the sample data for comparing different algorithms. However, the actual com-
parison and the development of the criteria need to be performed by the user. In ACCBench,
in contrast, the comparison criteria are built into the software, but the user needs to pro-
vide the data. Moreover, the “Causality Workbench” is again designed for causal discovery
algorithms.

3 ACCBench: Accountability Causality Comparison Benchmark

In this section, we describe the benchmark tool: ACCBench. We give an overview regarding
the architecture and general structure of ACCBench (Section 3.1). Subsequently, we present
the quantitative metrics used for comparing the causality algorithms (Section 3.2). Lastly, in
Section 3.3, we have a closer look at the algorithms implemented as part of ACCBench and the
adaptations we made.

3.1 Overview

As we mentioned before, accountability is desirable, if a (part of a) system did not behave as
expected. That is, behavior, which does not correspond to the“normal” behavior of that (part
of a) system. We summarize such a situation with unwanted behavior:

Definition 1 (Unwanted behavior). Unwanted behavior represents a deviation of a system’s normal
and intended behavior. Unwanted behavior may cause security, safety and/or privacy issues within a
system.

For example, unwanted behavior in an airplane would be that the landing gear is not extended
although the respective commands were sent to the control unit. Taking a look at the recorded

4 ACCBench: A Framework for comparing Causality Algorithms

behavior in the form of event logs, reasonable mechanism should be capable of finding the
cause(s) for the unwanted behavior.

With the help of ACCBench, we want to compare multiple causality mechanisms (algo-
rithms) regarding their performance and effectiveness in finding the cause of an unwanted
behavior (Def. 1). Therefore, we need to (1) create a consistent setting, i.e. an environment, in
which all algorithms have the same assumptions and information about a system, as well as
(2) reasonable metrics. In Fig. 2, the basic idea and functionality of this tool are illustrated.

Command Line Interface (CLI)

Benchmark Logic

Logs & Configuration Result

Configuration

Logs
Result

Figure 2: Informal Model of ACCBench

On the one hand, a user needs to provide a set
of log files captured by the system, in which the
cause(s) for potentially observed unwanted be-
havior shall be identified. On the other hand, a
file containing information an algorithm uses to
understand the behavior of the system, i.e. the
system/world model (cf. Fig. 1) is necessary. We
refer to such a file as configuration file. The spec-
ified event logs and configuration files are then
passed to the Benchmark Logic layer, which exe-
cutes the algorithms. Finally, the benchmark re-
sult is presented to the user.

Technically, ACCBench (effectiveness metrics and algorithms) is implemented in Java. Also,
Java Microbenchmark Harness (JMH)2 is used to profile the algorithms and measure the perfor-
mance. This microbenchmarking framework allows to cope with common pitfalls when mak-
ing measurements on the JVM, e.g. optimization, garbage collection etc., and leads to more
accurate results. Besides that, we also took advantage of an existing format for event logs and
a corresponding parser, namely an XML-based format called Extensible Event Stream (XES)3.

3.2 Metrics

In this subsection, we propose our criteria for measuring the effectiveness of an algorithm, i.e.
the degree to which it returns "correct" results. Next we discuss measuring the performance.

3.2.1 Effectiveness

Before reasoning about the correctness of the result of a causality algorithm, we need to define
such a result. Similarly as [12, 13, 11], in this paper we consider a cause as a conjunction of
events. Thus, only the occurrence of all these events causes the observed unwanted behavior
(Def. 1). For convenience, we model this conjunction as a set of events. Moreover, there might
be multiple causes for unwanted behavior. Therefore, we assume that a causality algorithm
returns a set of sets of events, where each set represents one unique cause. We aim to com-
pare the correct/expected causes (Rexp) with the ones an algorithm returns (Rhyp). We have
formalized Rexp and Rhyp in the following definition:

Definition 2 Cause R, expected (hypothesized) causesRexp (Rhyp) A cause R = {e1, ..., en} ⊆ L
(n ∈N) is a set of events ei ∈ L, where L is the set of uniquely identifiable events in an event log. An

2http://openjdk.java.net/projects/code-tools/jmh/ [Accessed 07 February 2017]
3http://www.xes-standard.org [Accessed 07 February 2017]

http://openjdk.java.net/projects/code-tools/jmh/
http://www.xes-standard.org

S. Rehwald, A. Ibrahim, K. Beckers, A. Pretschner 5

expected set of causes Rexp = {R1, ..., Rj} (j ∈N) is a set of causes R1, ..., Rj, which represents the real
causes for observed unwanted behavior. A hypothesized set of causes Rhyp = {R1, ..., Rk} (k ∈N) is a
set of causes R1, ..., Rk, which represent the hypothesized causes for observed unwanted behavior.

We are aware of the fact that this representation of causes does not take into account the
specific order of events. However, in some cases not only the existence of events, but also their
order defines whether or not they need to be considered as a cause. Therefore our approach
should rather be considered as an approximation of the effectiveness. Notice furthermore that
the specification of the real causes Rexp is highly dependent on the underlying definition of a
cause. In our case study (Section 4) we derived those causes manually looking at the results of
our threat analysis and relying on the definition of a cause made by the causality algorithms
described in Section 3.3.

We found out that comparing the two sets Rexp and Rhyp is not necessarily trivial. The
main problem to overcome is that we want to take partial correctness of results into account.
The rationale behind this is that intuitively an algorithm whose reported causes do not fully,
but partially, match the correct ones should be considered as more effective than an algorithm
whose results are completely wrong. Nevertheless, it might sometimes also be desirable to
only count fully correct results when benchmarking algorithms. Thus, we came up with two
different solutions building upon each other.

“Normal” Binary Classification This approach does not take partial correctness into ac-
count. Thus, we use a classification: true positives, false positives, true negatives and false
negatives (Tab. 1) in order to compute common metrics as precision, recall and F1-measure
(cf. [4, 3]). Precision is defined as the amount of true positives divided by the number of
predicted positives (i.e. the sum of true and false positives), whereas for computing the re-
call the amount of true positives is divided by the number of real positives (i.e. the sum of
true positives and false negatives). Hence, precision describes how many of the predicted

Real Class
+R (=Rexp) -R

Pr
ed

ic
te

d
C

la
ss

+P (=
Rhyp)

True Positives: The causes reported
by a causality algorithm, which are
also causes in reality.

False Positives: The causes re-
ported by a causality algorithm,
which are not causes in reality.

-P

False Negatives: The causes not re-
ported by a causality algorithm,
which are actually causes in reality.

True Negatives: The causes not re-
ported by a causality algorithm,
which are also not causes in reality.

Table 1: Binary Classification in the Context of Causality Algorithms

positives are actually true positives and recall describes how many of the real positives have
been correctly identified as positives. The F1-measure [3] is a metric combining both recall
and precision:

F1 =
2 · recall · precision
recall + precision

Using Tab. 1, we classify each Ri ∈ Rhyp returned by an algorithm using the real positives
Rexp. Since we do not care about partial correctness, a returned cause Ri ∈ Rhyp is only then
classified as true positive, if Ri ∈ Rexp holds, i.e. the complete set Ri needs to be an element
of the set of sets Rexp. However, this is a very strict classification.

6 ACCBench: A Framework for comparing Causality Algorithms

“Modified” Binary Classification We developed a second approach for measuring the effec-
tiveness. We reuse the idea of the Best Match algorithm in [5] and create a modified binary
classification similar to Tab. 1. Specifically, we relax the definitions of true positives etc. to
allow real values instead of natural ones. For example, a “0.5-true-positive” reflects partially
correct reported causes. The benefit is that all the previously mentioned metrics based on bi-
nary classification, e.g. precision, can be applied. Firstly, we compute a potentially real-valued
number of true positives NTP′ , which we refer to as “modified true positives”, and then use
some relations in order to obtain the number of “modified false positives” NFP′ and “modified
false negatives” NFN′ . Notice that we compute numbers and not the actual sets4.

Intuitively, we want to find the best match in the sense of highest similarity of each Ri ∈
Rhyp in Rexp, yet under the condition that there are not any Ri, Rj ∈Rhyp, which are matched
with the same Rk ∈ Rexp. Put another way, we match at most one Ri ∈ Rhyp to any Rk ∈ Rexp.
We can then sum up the (normalized) similarity between the assignments (Ri, Rk) and obtain
a real-valued number of true positives NTP′ . For the similarity s(S,S′) between two sets, we
can reuse the formula in [5] for the distance d(S,S′) between two sets and transform it to yield
the similarity (or the Jaccard index, respectively):

s(S,S′) = 1− d(S,S′) = 1−
(

1− |S ∩ S′|
|S ∪ S′|

)
=
|S ∩ S′|
|S ∪ S′|

However, assigning Ri ∈Rhyp to a Rk ∈Rexp is not trivial; an assignment problem needs to be
solved. Having computed NTP′ , we can use relations between +R, +P, TP, FP and FN, in order
to derive the number of modified false positives NFP′ and false negatives NFN′ :
• NFN′ = |Rexp| − NTP′

• NFP′ = |Rhyp| − NTP′

As shown in Tab. 1, the number of true positives +R, which is equal toRexp, can be obtained by
calculating the corresponding column sum, i.e. the sum of true positives and false negatives.
Similarly, we obtain the number of predicted positives +P, which is equal to Rhyp, by the
corresponding row sum, i.e. the sum of true positives and false positives. These relations
remain unchanged, even if we allow floats for the true positives etc. Subsequently, we can
insert the computed values for NTP′ , NFP′ and NFN′ in the formulas for precision, recall and
F1-measure without having to change anything in the latter.

3.2.2 Performance

For measuring the performance of the causality algorithms, we use the execution time and
amount of allocated memory for the analysis of a single event log. As mentioned before,
ACCBench makes sure that values for both are obtained in a reasonable and meaningful way
by using JMH.

3.3 Algorithms

In this section, we will briefly describe the concepts of the algorithms implemented in AC-
CBench. For more detailed considerations the respective papers of these approaches should be
consulted.

4This would not even be possible, because we would possibly need to express partial membership of some
elements to a set.

S. Rehwald, A. Ibrahim, K. Beckers, A. Pretschner 7

Gössler and Métayer [7] In order to analyze causality within a system, the authors use a
“language-based modeling framework” to model a system. That is, the behavior of each
component and the system itself is defined by a formal language. Intuitively, a single char-
acter in the “alphabet” of a component represents an atomic event and a “word” describes
a specific sequence of events. On that way, incorrect behavior of one or more components
can be detected by checking whether or not the behavior of the latter is a valid word in the
current language. The algorithm then replaces such incorrect behavior with correct behavior
taken from the specification given as formal language. If the unwanted behavior cannot be
observed anymore, the component(s) whose behavior were adapted are considered as (neces-
sary) causes5.

In our implementation, we tried to stick to the original algorithm, but made two mention-
able adaptations. One aspect, which is not addressed in the paper, is how to start the causality
analysis. That is, the main question: Which sets of components should be analyzed for causal-
ity and in which order? The authors only specify how their proposed analysis is conducted
with a given set I , which indexes the components analyzed for being a cause together. Accord-
ing to [7], their algorithm makes the assumption that unwanted behavior in a system can only
occur if at least one component does not behave as specified. Intuitively, it then makes sense
to investigate the components, which did somehow violate their specification. Therefore, our
implementation analyzes any combination of components, which behaved incorrectly. That
way, we do not miss out analyzing potential cause consisting of one ore more incorrect events.
Moreover, we have implemented the algorithm to output sets of causing events to conform
with our understanding of a cause (2). Since [7] actually return sets of components, there is
not a lot of change required. In our implementation, we determine the sets of causing compo-
nents based on exactly the same algorithm proposed by [7]. Then, we extract the first violating
event of each causing component. On that way, we transform each set of components into a
set of events, each of which represents a hypothesized cause. In our opinion this seems natu-
ral, because [7] base their analysis on the first violation of a component, but don not explicitly
return those events. A second adaptation is that we restricted the alphabet of this algorithm to
strings. This reduces complexity and makes the implementation more convenient. In general
however, a language over anything could be used by this algorithm.

Gössler and Astefanoaei [6] The concepts of this algorithm are similar to [7]. However, the
main difference is that [6] base their specification of the behavior of a system on timed automata.
Each component is represented as a timed automaton. During the causality analysis, potential
incorrect behavior of one or more components is again replaced with behavior taken from their
specification, in order to check, whether or not the occurred unwanted behavior can still be
observed. The authors use Uppaal6 for the creation, graphical representation and analysis of
timed automata.

Since the approach of [6] is described close to their implementation with this tool, no
adaptations were needed. However, similarly as for the previous algorithm, [6] do not specify
which components exactly to analyze for causality and the returned causes are again sets of
components. For the solution of this problem, we have used the same approach as for [7]

5Note that [7] distinguish between necessary and sufficient causality. In this paper however, we only focus on
the former form, because the other algorithms do not make this distinction.

6http://www.uppaal.org [Accessed 07 February 2017]

8 ACCBench: A Framework for comparing Causality Algorithms

described in the above.

Mian et al. [16] Compared to the previous algorithms, this approach differs in two main
aspects. First of all, it is not a causality analysis approach, but rather a policy compliance
framework. Secondly, [16] have developed a framework supporting auditors and not a pure
algorithm. Although the concepts of a causality and policy compliance approach differ to
some extent, we think a comparison of both is still reasonable in order to find exactly those
differences in terms of effectiveness and efficiency. However, due to the fact that [16] describes
rather a framework, some adaptations were necessary in order to ensure comparability with
the other algorithms. Specifically, we have developed an approach, which can check whether
or not specific predefined rules of a system were met. An example for such a rule could be
that a door is only allowed to be unlocked by a key card, if the holder of the key card is
authorized to enter. All those events violating a rule are finally reported by the algorithm
and interpreted as causes. As a result, our implementation is considerably different from the
original auditing framework, which is why we will from now on refer to the latter as policy
compliance algorithm inspired by concepts of [16].

4 Case Study

In this section, we evaluate the implemented algorithms in a case study using ACCBench.
Thereby, an intelligent Door Control System will serve as an example. Firstly, an introduction
to the door system will be provided (Section 4.1). Then, we describe the used event logs
(Section 4.2). Lastly, we compare and evaluate the results of executing the algorithms.

4.1 Introduction

Let us consider our exemplary Door Control System closely. We have chosen this system for
two main reasons. Firstly, it consists of multiple components with different specifications,
therefore, offers a variety of different (failure) scenarios. Secondly, such a door system is a
real-life socio-technical system. It demonstrates that accountability and causality are valuable
properties of modern systems.

The system used in this paper relies on specifications7 by the University College London
(UCL) and documents8 from Gallagher Security, which is the manufacturer of most of the
described system-components.

Structure Intuitively, the functionality of a Door Control System is clear: It shall prevent
unauthorized access within a building. For example, it might be a requirement that certain
areas should only be accessible by a specific group of users. Hence, several technical compo-
nents are needed to achieve these goals.

7http://www.ucl.ac.uk/estates/security/specifications/Gallagher-System-Specification_v1.pdf
[Accessed 18 October 2015], http://www.ucl.ac.uk/estates/maintenance/fire/documents/UCLFire_TN_001.
pdf [Accessed 05 September 2016]

8https://security.gallagher.com/gallagher-downloads/get/<id>, where <id> ∈ {41, 44, 45, 57, 126} [Ac-
cessed 05 September 2016]

http://www.ucl.ac.uk/estates/security/specifications/Gallagher-System-Specification_v1.pdf
http://www.ucl.ac.uk/estates/maintenance/fire/documents/UCLFire_TN_001.pdf
http://www.ucl.ac.uk/estates/maintenance/fire/documents/UCLFire_TN_001.pdf
https://security.gallagher.com/gallagher-downloads/get/<id>

S. Rehwald, A. Ibrahim, K. Beckers, A. Pretschner 9

* 1

*

11

11

1

1

1

1

1

Exit Device Card Reader

Door Drive Electronic Lock

Server

ControllerExpansion Interface

Figure 3: Basic Door Configuration and Struc-
ture

In the specification documents of UCL, a basic config-
uration of the doors is shown. We have modeled this
configuration in Fig. 3. Each door is fitted with a Card
Reader (insecure side, outside) and an Exit Device (se-
cure side, inside), which opens the door without hav-
ing to use a key card. Furthermore, an Electronic Lock
is attached to each door. We additionally extend this
setting with a Door Drive, which automatically opens
and closes a door. These four devices are connected to an Expansion Interface, i.e. a com-
ponent, which allows to combine several other devices and forward their signals. Each Ex-
pansion interface communicates with a Controller connected to a central Server. Following
the specifications of Gallagher Systems, this Server is the main decision-making unit (e.g. for
checking a user’s a key card), yet also the connected Controllers have some of those capabili-
ties in case they are currently not connected to the Server. However, for the sake of simplicity,
we assume that the Controller is just a component receiving and forwarding instruction in-
formation from/to the Server to/from devices. Therefore, only the Server maintains the main
logic of the door.

Each of the mentioned components writes a log entry when (1) an instruction has been
received, (2) a received instruction has been forwarded, (3) a new instruction has been created
and sent out, or (4) a (general) event occurred, e.g. a key card is detected to be invalid. Each
log entry consists of the name of an event, the component it occurred at, a timestamp as well
as an ID. As specified in Section 3, ACCBench requires the event logs to be in the XES format.

In our system, we assume two basic situations of unwanted behavior (Def. 1) whose
cause(s) shall be determined. The first is Harm of Individuals (E1). Obviously, such a system
should be designed in a way so that it does not injure its users. However, it might happen
that the door does not unlock and/or open. Especially in emergency situations like fire, this
might block escape routes and therefore potentially harm people. Furthermore, individuals
could get hurt, if the door closes unexpectedly, i.e. too quick after it has been opened. The
second unwanted behavior is Unauthorized Access (E2). For example, a person who should
not be allowed in a restricted area, can access it. Reasons for this may be that the door is not
closed at all or not locked. There are a variety of different causes, which may lead to specific
unwanted behavior. For instance, a door might not be locked, because the Electronic Lock is
damaged, but it could also be that the lock instruction was not sent to the latter.

4.2 Preparation

To be able to compare the algorithms in the Door Control System, we need to (1) model its
behavior as required by the algorithms (i.e. the configurations as shown in Fig. 2) and (2)
obtain event logs containing wrong behavior.

The configurations correspond to the requirements of each algorithm as explained earlier.
That is, for the algorithm in [7] a language-based and for [6] a timed automata-based behav-
ioral model of the system is provided. For our policy compliance approach based on concepts
of [16] we have specified a set of rules.

The event logs have been generated using CPNTools and an approach similar to [15]. We
conducted a hazard and threat analysis using fault and attack trees to obtain relevant scenar-
ios. In total, we generated 46 logs, of which 34 were created for analyzing the effectiveness and

10 ACCBench: A Framework for comparing Causality Algorithms

the remaining twelve for the performance. In the former case logs consist of between seven
and 58 entries and contain at most a single complete interaction with the system. That is, at
most one scenario starting with a user holding his key card against the reader and ending
with the closing and locking of the door provided that user was authorized. Otherwise, the
interactions stops with detecting that the user is not authorized. For the performance analysis,
the number of log entries is between 550 and 2750.

For a better interpretation of the results, we categorized the logged scenarios (Fig. 4).
We distinguish between scenarios, in which an unwanted behavior occurred, and scenarios,
in which no unwanted behavior occurred. However, in the latter case it is still possible that
components did violate their specification, but this did not cause an unwanted behavior.

No Unwanted Behavior

Unwanted Behavior

Each Incorrect Event is
Element of Minimal

Causes

Completely Correct
Behavior

Partially Correct
Behavior

Not each Incorrect
Event is Element of

Minimal Causes

Figure 4: Categorization of the Logged
Scenarios

Obviously, if no unwanted behavior occurred, even if some
components behaved incorrectly, the causality algorithm
should not report one or more potential causes. For a cat-
egorization in case unwanted behavior, we introduce the
term minimal cause, which we define as the smallest set of
events causing respective unwanted behavior. Note that in
the original theory of the two causality algorithms in [7]
and [6] minimality of the returned causes is not addressed
and as a consequence, we did not address it in our imple-
mentation. That is, the algorithms always return minimal
and possibly non-minimal causes. Now, in our classifica-
tion, we distinguish, whether or not each incorrect event9

in a log is element of a minimal cause for the current scenario. This allows us to see, if a
causality algorithm can clearly detect that in some cases not necessarily each incorrect event
alone or each combination of incorrect events can be blamed for causing unwanted behavior.

4.3 Evaluation

Having prepared the configurations for the three algorithms and generated the event logs,
now we describe their evaluation and benchmarking. On the one hand, we will show the
quantitative results obtained from ACCBench, i.e. the effectiveness and performance, and on
the other hand, we will also consider some more qualitative aspects of the algorithms.

Before starting the evaluation, let us consider some important remarks. In particular when
comparing the effectiveness of the algorithms, we need to take into account that causality al-
gorithms might be quite different, especially concerning their individual definition of a cause.
We have seen that the algorithms by [7] and [6] were designed to detect the cause(s) for ob-
served unwanted behavior. In contrast, both the original approach of [16] and our adapted
implementation are only capable of detecting the violation of defined policies, yet the algo-
rithm does not have a notion of unwanted behavior, which may result from a policy violation.
The difference is important: Unwanted behavior results from violation(s) of policies, specifica-
tions, rules etc. but not each violation necessarily leads to unwanted behavior. We think that
in general the comparison of causality algorithms regarding the correctness of results is only
reasonable, if (1) one’s own definition of a cause is congruent with the algorithms’ definition
and (2) all the algorithms share the same definition of a cause. Our implementations of the

9We refer to an event as incorrect, if it violates the specification of the component it occurred at.

S. Rehwald, A. Ibrahim, K. Beckers, A. Pretschner 11

algorithms in [7] and [6] share the same definition of a cause and therefore a comparison of
their reported results and the expected results is reasonable. However, this is not the case for
our implementation of the policy compliance approach in [16]. Nonetheless, we think that it
makes sense to compare the results of this algorithm with our expected results to understand
the difference between a policy compliance algorithm and an actual causality algorithm. Fur-
thermore, this creates a baseline for a causality algorithm: The latter should be more effective
than a policy compliance algorithm.

Moreover, we do not claim that the results of this case study generalize. The results only
show a specific application of the algorithms and therefore our findings may be different for
other systems. Nevertheless, we think that our example can to some extent show strengths
and weaknesses of the analyzed algorithms and point out areas for future improvements.

Effectiveness As described in Section 3.2, two approaches for estimating the effectiveness of
an algorithm are integrated into ACCBench. We will present results for both. We found out
that comparing the effectiveness of the algorithms on category-level of our categorization (Fig.
4) shows some insights. Hence, we conducted our analysis separately for each category.

Gößler and
Astefanoaei

Gößler and Métayer Policy Compli-
ance Algorithm

0

0.5

1

1.
00

0

1.
00

0

0.
33

3

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

0.
33

3

1.
00

0

1.
00

0

0.
33

3

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

0.
33

3

F1 Recall Precison F1’ Recall’ Precison’

Figure 5: Metrics for the categories Completely Cor-
rect Behavior and Partially Correct Behavior

We start with the event logs, in which no un-
wanted behavior can be observed, i.e. we com-
bine both the fully and partially correct logs. As
seen in Fig. 510), there is a considerable differ-
ence between causality algorithms and the policy
compliance algorithm. As explained before, the
latter approach has no notion of whether or not
unwanted behavior actually occurred and there-
fore blames any incorrect event. This decreases
the precision metrics and thus the F1-measure. No-
tice that the average recall is equal to 1 in this cat-
egory, because the number of false negatives will always be zero due to the mere fact that
the set of expected causes is empty. The reason why the other two metrics are not equal to
zero for our policy compliance algorithm is that in the completely correct scenarios the latter
does not report any violation and therefore matches the expected result. Since the other two
algorithms can always detect that no unwanted behavior occurred in all the scenarios of this
category, their results are fully correct.

For event logs in which unwanted behavior can be observed, we start with the analysis
of those where each incorrect event is an element of a minimal cause. Computing again our
metrics, this results in the values shown in Fig. 6. We can see that our implementations of
the two causality algorithms had some problems in always detecting a fully correct result,
which is why the corresponding metrics do not evaluate to 1 anymore. Our analysis has
shown that there exist multiple reasons for these results. The language-based causality al-
gorithm [7] seems to have the problem of replacing the incorrect behavior of components in
the counterfactual scenario, although this behavior should not change. As a result, the faulty
components and their events might be blamed just because during their analysis wrong be-
havior of other components is removed. For our implementation of the algorithm in [6], we
observed the same problem. Furthermore, we detected that this approach is not fully correct

10The metrics marked with (’) are based on the modified binary classification. This also applies to Figs. 6 & 7.

12 ACCBench: A Framework for comparing Causality Algorithms

and can produce different results in some situation than it claims to.

Gößler and
Astefanoaei

Gößler and Métayer Policy Compli-
ance Algorithm

0

0.5

1 0.
88

9

0.
95

6

0.
86

7

0.
93

3

1.
00

0

0.
86

7

0.
93

3

0.
93

3

0.
86

7

0.
88

9

0.
95

6

0.
91

1

0.
93

3

1.
00

0

0.
93

3

0.
93

3

0.
93

3

0.
90

0

F1 Recall Precison F1’ Recall’ Precison’

Figure 6: Metrics for category Each Violating Event
is an Element of Minimal Cause

This issue can arise if broadcast channels are used
in the timed automata modeling a system’s be-
havior. Additionally, we detected that deadlocks
in the networks of timed automata constructed by
the algorithm of [6] prevent the proper construc-
tion of counterfactual behavior and lead to wrong
hypothesized causes. We have verified the exis-
tence of this problem during a discussion with
the first author of [6]. Lastly, we can see that
our policy compliance approach performs almost
equally as compared to the previous algorithms.
However, finding different variants of scenarios in the current category was difficult, which is
why in most of them only one component is behaving incorrectly with a single event. Thus,
the policy compliance algorithm reports mostly a correct result, even though it is not based
on the same definition of a cause.

Gößler and
Astefanoaei

Gößler and Métayer Policy Compli-
ance Algorithm

0

0.5

1

0.
73

3

0.
69

7

0.
38

60.
70

0

0.
80

0

0.
37

5

0.
80

0

0.
62

4

0.
40

0

0.
80

6

0.
76

5

0.
64

6

0.
75

4

0.
85

4

0.
62

50.
90

8

0.
73

2

0.
67

5

F1 Recall Precison F1’ Recall’ Precison’

Figure 7: Metrics for category Not Each Violating
Event is an Element of Minimal Cause

Finally, let us consider those event logs, in
which not each violation is an element of a min-
imal cause. Figure 7 shows again that there
are differences between all three algorithms. We
can see that the timed automata-based causality
algorithm yields slightly better results than the
language-based one, but both algorithms perform
worse than in previous categories. The effective-
ness metrics for our policy compliance approach
decreased significantly as well. All the problems
described in the above also occurred in this class
of logs, but, due to the diversity of the scenarios and corresponding logs, more often. More-
over, we found that the two causality algorithms ignore other incorrect behavior of a compo-
nent once it has violated its specification. That is, even if there has been incorrect behavior,
which did not lead to unwanted system behavior, any potentially wrong behavior coming
afterwards is not considered. Since the policy compliance approach simply returns any viola-
tion of a rule as sets of single causes, yet the event logs in the current category expose more
sophisticated causes for the unwanted behavior.

Performance To obtain insights on the performance in terms of execution time and memory
allocation, we analyzed on the one hand the 34 event logs used for evaluating the effectiveness
as well as twelve logs consisting of a higher amount of events (see Section 4.2). In three of the
latter logs, no unwanted behavior can be observed. Basically, we just looped one interaction
with the Door Control System, i.e. from using a key card until the door is closed again,
multiple times. The remaining nine event logs contain unwanted behavior caused by a single
event and differ in their length and the position of this single incorrect event, i.e. in the
beginning, middle or end of the log.

All our measurements were conducted with ACCBench on a machine equipped with an
Intel R© CoreTM i7-4700HQ CPU, 8GB RAM and running Windows 10. For space reasons, we
only show our results concerning the execution time of the algorithms. As seen in (Fig. 8), the

S. Rehwald, A. Ibrahim, K. Beckers, A. Pretschner 13

Gößler and
Astefanoaei

Gößler and Métayer Policy Compli-
ance Algorithm

100

104

108

5,
19

6.
00

0

6.
67

6

0.
66

0

Ex
ec

ut
io

n
Ti

m
e

in
m

s

(a) Event Logs of Small Size (7-58 Entries)

Gößler and
Astefanoaei

Gößler and Métayer Policy Compli-
ance Algorithm

102

105

108

3.
27

6
·1

05

6,
73

9.
90

0

87
.3

00

Ex
ec

ut
io

n
Ti

m
e

in
m

s

(b) Event Logs of Larger Size (550-2750 Entries)

Figure 8: Average Execution Times for the Analysis of a Single Event Log

size of log in terms of the number of events it contains, increases the execution time for each al-
gorithm. However, whereas the execution time for our implementation of the language-based
algorithm [7] and our policy compliance approach stays in the range of seconds or millisec-
onds, the timed automata-based algorithm [6] exceeds five minutes on average for larger logs.
The reason seems to be the usage of Uppaal and the model checking on timed automata. We
also found out that it plays a role for the two causality algorithms in which part of a log
incorrect behavior occurs, which potentially leads to unwanted system behavior. The reason
is that both of these algorithms try to generate their counterfactual scenarios while keeping a
specific prefix of the actually observed behavior in the event log. As a result, more data needs
to be considered during the computation of counterfactual system behavior. Furthermore, the
number of misbehaving components plays a role for the execution time as well. Since all com-
binations of components are analyzed to obtain which possibly caused unwanted behavior,
the number of analysis iterations of the applied algorithm increases exponentially. Interest-
ingly, all the previous factors do not apply to our policy compliance approach. It analyzes
each event of a log once no matter how many components violated their specification. As we
can see, this yields a higher performance in terms of execution time as compared to the actual
causality algorithms by [7] and [6].

Qualitative Analysis For our qualitative analysis, we decided on three dimensions: The
effort for creating the configuration for the algorithm, i.e. the modeling of the system behavior,
limitations an algorithm might have and potential dependencies. Our results are summarized
in Tab. 2.

5 Conclusion and Future Work

In this paper, we proposed ACCBench, a novel and extensible benchmark tool allowing to com-
pare causality algorithms. This comparison applies metrics concerning the effectiveness and
the performance of an algorithm. For the effectiveness, we developed two criteria based on
binary classification, which try to estimate how effectively an algorithm can find the causing
event(s) for unwanted behavior (Def. 1). Additionally, we implemented two recent causality
algorithms described in [7] and [6] as well as a policy compliance approach in which we inte-
grated ideas and concepts of [16]. Finally, we evaluated these algorithms using ACCBench in
a case study.

We concluded that the two causality algorithms report better results, yet in some cases
with heavy performance impact compared to the policy compliance approach. Moreover, we
found that the type of input and information a user needs to provide to an algorithm have

14 ACCBench: A Framework for comparing Causality Algorithms

Gößler and Métayer [7] Gößler and Astefanoaei [6] Policy Compliance
Algorithm

– Configuration Effort: Language-
based configuration is rather ab-
stract, complex and error-prone.
Possibly good idea, if formal
specification of a system exists.

– Limitations: Specifically for our
implementation: language only
over strings (components) and
tuples of strings (complete sys-
tem), i.e. time is not consid-
ered, only the order of events (In
general: Language over anything
theoretically possible). Allowed
behavior has fixed starting point.

– Dependencies: None

– Configuration Effort: Modeling
with timed automata rather in-
tuitive and easy validation, e.g.
through simulation. May become
complex with increasing number
of components and/or complex
behavior.

– Limitations: Makes the assump-
tion that interaction between
components is synchronous.
Specifications of component
have fixed starting point. Only
event and its timestamp can be
considered during the analysis
(not relevant for this case study).

– Dependencies: Uppaal; API prob-
lematic under Linux.

– Configuration Effort: Intuitive, if
few events. May become com-
plex for many rules and/or com-
plex constraints.

– Limitations: Only event and
its timestamp can be considered
during the analysis (not relevant
for this case study). Complex
rules potentially not possible.

– Dependencies: None

Table 2: Summary of the Qualitative Analysis

a significant impact on the applicability. For example, we noted that, the language-based
framework of [7] for modeling a system is powerful but quite abstract approach, whereas the
usage of timed automata in [6] might be more intuitive. The rules in our policy compliance
algorithm seemed promising as well, but might become complex and less applicable for other
systems.

We believe that this paper provides an interesting and relevant contribution to account-
ability and causality research. In the future, we would like to extend our work and address
several additional aspects. Because our case study was a simplified example using simulated
log files, we have only shown the applicability of the algorithms in a rather isolated setting.
Hence, we would like to apply the algorithms in an existing system to see if and how much
pre-processing is required. In general, more research is required to achieve meaningful state-
ments about the quality of the algorithms considered in this paper. The case study has also
shown that the performance of the algorithms decreases the larger the event logs get. Thus,
we plan to investigate approaches for addressing performance issues.

Acknowledgment
This work is part of the TUM Living Lab Connected Mobility (TUM LLCM) project and has
been funded by the Bavarian Ministry of Economic Affairs and Media, Energy and Technology
(StMWi) through the Center Digitisation.Bavaria, an initiative of the Bavarian State Govern-
ment.

References

[1] Kristian Beckers, Jörg Landthaler, Florian Matthes, Alexander Pretschner & Bernhard Waltl (2016):
Data Accountability in Socio-Technical Systems. In: Enterprise, Business-Process and Information Systems
Modeling - 17th International Conference, BPMDS 2016, 21st International Conference, EMMSAD 2016,
Held at CAiSE 2016, Ljubljana, Slovenia, June 13-14, 2016, Proceedings, pp. 335–348.

S. Rehwald, A. Ibrahim, K. Beckers, A. Pretschner 15

[2] Mark Bovens (2010): Two Concepts of Accountability: Accountability as a Virtue and as a Mechanism.
West European Politics 33(5), pp. 946–967.

[3] Nancy Chinchor (1992): MUC-4 evaluation metrics. In: Proceedings of the 4th Conference on Message
Understanding, MUC 1992, McLean, Virginia, USA, June 16-18, 1992, pp. 22–29.

[4] Tom Fawcett (2006): An introduction to ROC analysis. Pattern Recognition Letters 27(8), pp. 861–874.
[5] Mark K. Goldberg, Mykola Hayvanovych & Malik Magdon-Ismail (2010): Measuring Similarity

between Sets of Overlapping Clusters. In: Proceedings of the 2010 IEEE Second International Conference
on Social Computing, SocialCom / IEEE International Conference on Privacy, Security, Risk and Trust,
PASSAT 2010, Minneapolis, Minnesota, USA, August 20-22, 2010, pp. 303–308.

[6] Gregor Gößler & Lacramioara Astefanoaei (2014): Blaming in component-based real-time systems. In:
2014 International Conference on Embedded Software, EMSOFT 2014, New Delhi, India, October 12-17,
2014, pp. 7:1–7:10.

[7] Gregor Gößler & Daniel Le Métayer (2013): A General Trace-Based Framework of Logical Causality. In:
Formal Aspects of Component Software - 10th International Symposium, FACS 2013, Nanchang, China,
October 27-29, 2013, Revised Selected Papers, pp. 157–173.

[8] Isabelle Guyon, C. Aliferis, G. Cooper, A. Elisseeff J.-P. Pellet, P. Spirtes & A. Statnikov (2011):
Causality Workbench, chapter 26, pp. 543–561. Oxford University Press.

[9] Isabelle Guyon, Constantin Aliferis, Greg Cooper, André Elisseeff, Olivier Guyon, Jean-Philippe
Pellet, Peter Spirtes & Alexander Statnikov (2009): The Causality Workbench Virtual Lab. Technical
Report, US National Science Foundation.

[10] Isabelle Guyon, Alexander R. Statnikov & Constantin F. Aliferis (2011): Time Series Analysis with the
Causality Workbench. In: Neural Information Processing Systems (NIPS) Mini-Symposium on Causality
in Time Series, Vancouver, Canada, December 10, 2009, pp. 115–139.

[11] Joseph Y. Halpern (2015): A Modification of the Halpern-Pearl Definition of Causality. In: Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, pp. 3022–3033.

[12] Joseph Y. Halpern & Judea Pearl (2005): Causes and Explanations: A Structural-Model Approach. Part
I: Causes. The British Journal for the Philosophy of Science 56(4), pp. 843–887.

[13] Joseph Y. Halpern & Judea Pearl (2005): Causes and Explanations: A Structural-Model Approach. Part
II: Explanations. The British Journal for the Philosophy of Science 56(4), pp. 889–911.

[14] Severin Kacianka, Florian Kelbert & Alexander Pretschner (2016): Towards a Unified Model of Ac-
countability Infrastructures. In: Proceedings First Workshop on Causal Reasoning for Embedded and
safety-critical Systems Technologies, CREST@ETAPS 2016, Eindhoven, The Netherlands, 8th April 2016.,
pp. 40–54.

[15] A.K. Alves de Medeiros & C.W. Günther (2005): Process mining: Using CPN Tools to Create Test Logs
for Mining Algorithms. In: Proceedings of the sixth workshop on the practical use of coloured Petri nets
and CPN tools (CPN 2005), 576.

[16] Umbreen Sabir Mian, Jerry den Hartog, Sandro Etalle & Nicola Zannone (2015): Auditing with
Incomplete Logs. In: Proceedings of the 3rd Workshop on Hot Issues in Security Principles and Trust
(2015, London, UK, April 18, 2015; affiliated with ETAPS 2015), pp. 1–23.

[17] Joris M. Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler & Bernhard Schölkopf (2016):
Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks. Journal of Machine
Learning Research 17(32), pp. 1–102.

[18] Richard Mulgan (2000): ‘Accountability’: An Ever-Expanding Concept? Public Administration 78(3),
pp. 555–573.

[19] Daniel J. Weitzner, Harold Abelson, Tim Berners-Lee, Joan Feigenbaum, James Hendler & Ger-
ald Jay Sussman (2008): Information Accountability. Commun. ACM 51(6), pp. 82–87.

	Introduction
	Related Work
	ACCBench: Accountability Causality Comparison Benchmark
	Overview
	Metrics
	Effectiveness
	Performance

	Algorithms

	Case Study
	Introduction
	Preparation
	Evaluation

	Conclusion and Future Work

